
International Journal of Computer Vision (2019) 127:1217–1234
https://doi.org/10.1007/s11263-019-01174-4

Deep Supervised Hashing for Fast Image Retrieval

Haomiao Liu1,2 · Ruiping Wang1,2 · Shiguang Shan1,2 · Xilin Chen1,2

Received: 10 August 2017 / Accepted: 6 March 2019 / Published online: 16 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, we present a new hashingmethod to learn compact binary codes for highly efficient image retrieval on large-scale
datasets. While the complex image appearance variations still pose a great challenge to reliable retrieval, in light of the recent
progress of Convolutional Neural Networks (CNNs) in learning robust image representation on various vision tasks, this paper
proposes a novel Deep Supervised Hashing method to learn compact similarity-preserving binary code for the huge body of
image data. Specifically, we devise a CNN architecture that takes pairs/triplets of images as training inputs and encourages the
output of each image to approximate discrete values (e.g. + 1/− 1). To this end, the loss functions are elaborately designed to
maximize the discriminability of the output space by encoding the supervised information from the input image pairs/triplets,
and simultaneously imposing regularization on the real-valued outputs to approximate the desired discrete values. For image
retrieval, new-coming query images can be easily encoded by forward propagating through the network and then quantizing the
network outputs to binary codes representation. Extensive experiments on three large scale datasets CIFAR-10, NUS-WIDE,
and SVHN show the promising performance of our method compared with the state-of-the-arts.

Keywords Image retrieval · Hashing · Convolutional network · Contrastive loss · Triplet ranking loss

1 Introduction

In recent years, hundreds of thousands of images are
uploaded to the Internet every day, making it extremely dif-
ficult to find relevant images according to different users’
request. For example, content-based image retrieval retrieves
images that are similar to a given query image, where “sim-
ilar” may refer to visually similar or semantically similar.
Suppose that both the images in the database and the query
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image are represented by real-valued features, the most
straightforward way of looking for relevant images is by
ranking the database images according to their distances to
the query image in the feature space, and returning the closest
ones. However, for a database with millions or even billions
of images, which is quite common nowadays, even a linear
search through the database would cost a great deal of time
and memory.

To address the inefficiencyof real-valued features, hashing
approaches are proposed to map images to compact binary
codes that approximately preserve the data structure in the
original space (Jégou et al. 2011; Liu et al. 2012; Wang et al.
2012), for example. Since the images are represented by
binary codes instead of real-valued features, the time and
memory costs of searching can be greatly reduced. However,
the retrieval performance of most existing hashing methods
heavily depends on the features they use, which are basi-
cally extracted in an unsupervisedmanner, thusmore suitable
for dealing with the visual similarity search rather than the
semantic similarity search.On the other hand, recent progress
in image classification (Zhang et al. 2016; Krizhevsky et al.
2012; Szegedy et al. 2015), object detection (Szegedy et al.
2013), face recognition (Sun et al. 2014), and many other
vision tasks (Deng et al. 2014; Long et al. 2015) demon-
strate the impressive learning ability of Convolutional Neural
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Fig. 1 An example network structure of our method. The network con-
sists of 3 convolution-pooling layers and 2 fully connected layers. The
filters in convolution layers are of size 5 × 5 with stride 1 (32, 32, and
64 filters in the three convolution layers respectively), and pooling over
3 × 3 patches with stride 2. The first fully connected layer contains

500 nodes, and the second (output layer) has k (the code length) nodes.
The loss functions are designed to learn similarity-preserving binary-
like codes by exploiting discriminability terms and a regularizer. Binary
codes are obtained by quantizing the network outputs of images

Networks (CNNs). In these different tasks, the CNNs can
be viewed as a feature extractor guided by the objective
functions specifically designed for the individual tasks. The
successful applications of CNNs in various tasks imply that
the features learned byCNNs canwell capture the underlying
semantic structure of images in spite of significant appear-
ance variations.

Inspired by the robustness of CNN features, we propose
a binary code learning framework by exploiting the CNN
structure, named Deep Supervised Hashing (DSH). In our
method, firstwedevise aCNNmodelwhich takes imagepairs
or triplets alongwith labels indicating the degree of similarity
as training inputs, and produces binary codes as outputs, as
shown in Fig. 1. In practice, we generate image pairs/triplets
online so that many more image pairs/triplets can be uti-
lized in the training stage. The loss functions are designed to
pull the network outputs of similar images together and push
the outputs of dissimilar ones far away, so that the learned
Hamming space can well approximate the semantic struc-
ture of images. Ideally, we prefer to directly optimize the
binary codes in the Hamming space instead of relaxing them
to real values in order to avoid the possible performance
degradation caused by quantization loss. However, optimiz-
ing the non-differentiable loss function in Hamming space
would inevitably incur gradient issues, thus making the opti-
mization of the CNN model difficult. As a trade-off for the
aforementioned problem, the network outputs are relaxed to
real values, while simultaneously a regularizer is imposed
to encourage the real-valued outputs to approach the desired
discrete values, as illustrated in Fig. 2. Under this framework,
images can be easily encoded by first forward propagating
through the network and then quantizing the network outputs
to binary codes representation.

Preliminary results of the method have been published in
Liu et al. (2016). Compared with the conference version, this
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Fig. 2 Illustration of the regularizer proposed in our Deep Supervised
Hashing (DSH) method. Ideally, we would like to directly learn dis-
criminative binary codes in the Hamming space, as illustrated in the top
right of this figure. However, since directly learning binary codes would
inevitably cause gradient issues, optimization of the CNNmodel would
be difficult. To deal with this problem, the binary Hamming space is
relaxed to a binary-like Euclidean space by imposing a regularizer on
the CNN outputs, as shown in the bottom right of the figure

paper has made three major extensions. First, we generalize
the framework to be compatible with not only the previous
pair-wise contrastive loss but also the triplet ranking loss,
which is alsowidely adopted inmany hash learningmethods,
e.g. Lai et al. (2015) and Zhao et al. (2015). Second, we pro-
vide more detailed comparisons and discussions regarding
different strategies for obtaining long binary codes, including
training a new model from scratch, fine-tuning a pre-trained
model, and concatenating outputs of multiple models that
produce short codes. Third, more extensive experiments are
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conducted to evaluate each component of the method and
compare with more state-of-the-art algorithms on one more
challenging dataset SVHN.

The rest of the paper is organised as follows: Sect. 2 dis-
cusses the related works to our method. Sections 3 and 4
describe DSH in detail. Section 5 extensively evaluates the
proposedmethodon three large scale datasets. Section6gives
concluding remarks.

2 RelatedWork

The problem of nearest neighbor search aims at finding an
item from the database, which is the nearest to a query item
in terms of a certain metric. In the case that the database is
large or that the computation of the distance metric is costly,
the computational overhead of exact nearest neighbor search
is prohibitively high. As a more practical alternative, approx-
imate nearest neighbor search methods have received more
andmore attention thanks to their high efficiency (Wang et al.
2017). Specifically, as a representative family of such meth-
ods, many hashing algorithms (Gionis et al. 1999; Gong and
Lazebnik 2011; Jiang and Li 2017; Kang et al. 2016; Kulis
and Darrell 2009; Lai et al. 2015; Li et al. 2016; Lin et al.
2015a; Liu et al. 2017, 2014, 2012; Norouzi and Fleet 2011;
Rastegari et al. 2012; Shen et al. 2015; Wang et al. 2012;
Weiss et al. 2008; Xia et al. 2014; Zhang et al. 2016; Zhao
et al. 2015) have been proposed to boost the performance of
approximate nearest neighbor search due to their low time
and space complexity. In the early years, researchers mainly
focusedondata-independent hashingmethods, such as a fam-
ily of methods known as Locality Sensitive Hashing (LSH)
(Gionis et al. 1999). LSHmethods use random projections to
produce hashing bits. It has been proven theoretically that as
the code length grows, the Hamming distance between two
binary codes asymptotically approaches their corresponding
distance in the feature space. However, LSH methods usu-
ally require long codes to achieve satisfactory performance,
which demands for large amount of memory.

To produce more compact binary codes, data-dependent
hashing methods are proposed, which attempt to learn
similarity-preserving hashing functions from a training set.
These methods can be further divided into unsupervised
methods and supervised (semi-supervised) methods. Unsu-
pervised methods only make use of unlabelled training data
to learn hash functions. For example, Spectral Hashing (SH)
(Weiss et al. 2008) minimizes the weighted Hamming dis-
tance of image pairs, where the weights are defined to be
the similarity metrics of image pairs in the original fea-
ture space; Iterative Quantization (ITQ) (Gong and Lazebnik
2011) tries to minimize the quantization error on projected
image descriptors so as to alleviate the information loss

caused by the discrepancy between the real-valued feature
space and the binary Hamming space.

To better deal with more complicated semantic similar-
ity, supervised methods are proposed to take advantage of
label information, such as category labels. CCA-ITQ (Gong
and Lazebnik 2011), which is an extension of ITQ, uses
label information to find better projections for the image
descriptors; Predictable Discriminative Binary Code (DBC)
(Rastegari et al. 2012) looks for hyperplanes that separate
samples of different categories with large margin as hash
functions;Minimal Loss Hashing (MLH) (Norouzi and Fleet
2011) optimizes the upper bound of a hinge-like loss to
learn the hash functions. On the other hand, Semi-Supervised
Hashing (SSH) (Wang et al. 2012) makes use of the abundant
unlabelled data to regularize the hashing functions. While
the above methods use linear projections as hashing func-
tions, they can hardly deal with linearly inseparable data.
To overcome this limitation, methods such as Supervised
Hashing with Kernels (KSH) (Liu et al. 2012) and Binary
Reconstructive Embedding (BRE) (Kulis and Darrell 2009)
are proposed to learn similarity-preserving hashing functions
in kernel space; Deep Hashing (DH) (Erin Liong et al. 2015)
exploits a highly non-linear deep network to produce binary
codes.While most hashingmethods relax the binary codes to
real values in optimization and quantize the model outputs to
produce binary codes, there is no guarantee that the optimal
real-valued codes are still optimal after quantization. To cope
with this problem, methods such as Discrete Graph Hashing
(DGH) (Liu et al. 2014) and Supervised Discrete Hashing
(SDH) (Shen et al. 2015) are proposed to directly optimize
the discrete binary codes to overcome the shortcomings of
relaxation, and achieve improved retrieval performance.

While the aforementioned hashingmethods have certainly
achieved success to some extent, they all use hand-crafted
features, which cannot well capture the complex semantic
information beneath the drastic appearance variations in real-
world data and thus limit the retrieval accuracy of the learned
binary codes. To tackle this issue, recently several CNN-
based hashing methods (Lai et al. 2015; Li et al. 2016; Lin
et al. 2015a; Wang et al. 2016; Xia et al. 2014; Zhang et al.
2015; Zhao et al. 2015) are proposed to learn image repre-
sentations together with binary codes using the promising
CNN models. Among them, Lai et al. (2015), Zhang et al.
(2015) and Zhao et al. (2015) enforce the network to learn
binary-like outputs that preserve the semantic relations of
image triplets; Xia et al. (2014) trains a CNN to fit the binary
codes computed from the pairwise similaritymatrix; Lin et al.
(2015a) trains the model with a binary-like hidden layer as
features for image classification tasks; most recently, Li et al.
(2016) and Wang et al. (2016) propose to impose a regular-
ization term to reduce the discrepancy between the learned
real-valued feature space and the desired Hamming space.
Cao et al. (2017) proposes an effective scheme by using
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an evolving smooth activation function to approximate the
non-differentiable sign function, and it shows appealing per-
formance in decreasing the discrepancy between the learned
real-valued features and binary codes. While it can gener-
ate exactly binary hash codes, the preceding layers may not
be sufficiently trained when the non-smoothness of the acti-
vation function increases too fast, for the back-propagated
gradients decrease as the non-smoothness increases. By cou-
pling image feature extraction and binary code learning,
these methods have greatly improved the retrieval accura-
cies. Nevertheless, there are still some shortcomings with
the training objectives of these methods that limit their prac-
tical retrieval performance, e.g. the separated hash coding
and feature learning steps in Xia et al. (2014) and the incom-
patibility of the classification loss and the retrieval task in
Lin et al. (2015a), which will be detailed in our experiments.
In addition, the saturated non-linear activations that most
of them (Lai et al. 2015; Lin et al. 2015a; Xia et al. 2014;
Zhang et al. 2015; Zhao et al. 2015) employ to approximate
the quantization step operate at the risk of possibly slow-
ing down the network training, as indicated by Krizhevsky
et al. (2012). To deal with the above problems, we pro-
pose to learn the hashing functions in an end-to-end manner
by simultaneously exploiting discriminability terms and a
quantization regularizer as the loss function of the CNN
model.

3 Approach

Our goal is to learn compact binary codes for images such
that: (a) similar images should be encoded to similar binary
codes inHamming space, and vice versa; (b) the binary codes
of new-coming images could be computed efficiently; (c) an
end-to-end learning framework that can simultaneously learn
intermediate image representations and binary codes.

Although many hashing methods have been proposed to
learn similarity-preserving binary codes, they suffer from the
limitations of either hand-crafted features or linear projec-
tions. On the other hand, the powerful non-linear models
known as CNNs have facilitated the recent successes in com-
puter vision community in various tasks. Based on these
observations, we propose to use the CNNmodels to learn dis-
criminative image representations and compact binary codes
simultaneously, which can break out the limitations of both
hand-crafted features and linear models. To better illustrate
our framework, a simple example network of our method
is demonstrated in Fig. 1. Our method first trains the CNN
using image pairs or triplets and the corresponding similar-
ity labels. Here the loss functions are elaborately designed
to learn similarity-preserving binary-like image representa-
tions. Then the CNNoutputs are quantized to generate binary
codes for new-coming images.

3.1 Loss Function

Let Ω be the RGB image space, our approach aims at learn-
ing a mapping from Ω to k-bit binary code: F : Ω →
{+ 1,− 1}k , such that similar (either in terms of visual sim-
ilarity or semantic similarity) images are encoded to similar
binary codes and vice versa. For this purpose, the loss func-
tion is naturally designed to pull the codes of similar images
together, and push the codes of dissimilar images away from
each other. In this paper, we consider two typical kinds of
loss functions using either pair-wise or triplet supervision,
i.e. the contrastive loss that was studied in our preliminary
conference version (Liu et al. 2016) and the triplet ranking
loss, which is also widely adopted in previous hash learning
methods.

3.1.1 Contrastive Loss

The contrastive loss is designed to pull the binary codes of
similar images as close as possible and simultaneously push
the codes of dissimilar images far away until the distances
exceed a pre-set margin, as shown in Fig. 3(a). Formally, for
a pair of images I1, I2 ∈ Ω and the corresponding binary
network outputs b1,b2 ∈ {+1,−1}k , we define y = 0 if
they are similar, and y = 1 otherwise. The loss with respect
to the pair of images is defined as:

Lcon(b1,b2, y) = 1

2
(1 − y)Dh(b1,b2)

+1

2
y max(mc − Dh(b1,b2), 0)

s.t . b j ∈ {+1,−1}k, j ∈ {1, 2} (1)

mc

mt

(b)(a)

Fig. 3 Illustration of the two kinds of loss functions adopted in our
method. a The contrastive loss, where similar samples (yellow circles)
are encouraged to be as close to each other as possible, while the dis-
tances between dissimilar samples (the center yellow circle, the red
circle, and the green circle) should be larger than mc. b The triplet
ranking loss, where the distance between similar samples (yellow cir-
cles) is enforced to be smaller than the distances between dissimilar
samples (the center yellow circle, the red circle, and the green circle)
by a margin mt (Color figure online)
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where Dh(· , ·) denotes the Hamming distance between two
binary vectors, andmc > 0 is themargin threshold parameter
of contrastive loss. The first term in Eq. (1) punishes similar
images that are mapped to different binary codes, and the
second term punishes dissimilar images mapped to close-by
binary codes when their Hamming distance falls below the
margin threshold mc. Here the margin mc is incorporated to
avoid collapsed solution following (Hadsell et al. 2006), that
is, only those dissimilar pairs having their distances within a
radius are eligible to contribute to the loss function.

Suppose that there are Nc training pairs randomly selected
from the training images {(Ii,1, Ii,2, yi )|i = 1, . . . , Nc}, our
goal is to minimize the overall loss function:

Lcon =
Nc∑

i=1

Lcon(bi,1,bi,2, yi )

s.t . bi, j ∈ {+1,−1}k, j ∈ {1, 2}, ∀ i (2)

3.1.2 Triplet Ranking Loss

Similar to the contrastive loss, triplet ranking loss also aims at
learning discriminative image representations but in a softer
manner. Specifically, unlike the contrastive loss which pun-
ishes any non-zero distances between the binary codes of
similar images, triplet ranking loss only requires the distances
between codes of similar images being smaller than that of
dissimilar images, as shown in Fig. 3b. For an image triplet
Ia, Ip, In ∈ Ω and the corresponding binary network outputs
ba,bp,bn ∈ {+1,−1}k , where Ia is more similar to Ip than
to In (here we use the subscripts to denote anchor, positive,
and negative respectively). The loss function for this triplet
is defined as:

Ltri (ba,bp,bn) = 1

2
max(Dh(ba,bp)

−Dh(ba,bn) + mt , 0)

s.t . ba,bp,bn ∈ {+1,−1}k (3)

wheremt > 0 is themargin parameter of the triplet loss. This
loss function forces the Hamming distance between ba and
bn to be larger than theHamming distance betweenba andbp

by amarginmt . Instead of constraining the precise numerical
values of the distances, this loss function imposes constraints
on the relative distances of all samples to the anchor sample
Ia , and is thus considered more suitable for retrieval tasks
(Norouzi et al. 2012).

Similarly, suppose that there are Nt training triplets
randomly selected from the training images {(Ii,a, Ii,p, Ii,n}|

i = 1, . . . , Nt }, the overall loss function to minimize is as
follows:

Ltr i =
Nt∑

i=1

Ltri (bi,a,bi,p,bi,n)

s.t . bi,a,bi,p,bi,n ∈ {+1,−1}k, ∀ i (4)

3.2 Optimization

It would be preferable if one can directly optimize Eq. (2)
or Eq. (4), however it is infeasible because the binary con-
straints on b require thresholding the network outputs (e.g.
with signum function), andwillmake it intractable to train the
networkwith standard back propagation algorithm.Although
some recent works (Liu et al. 2014; Shen et al. 2015) propose
to directly optimize the binary codes, they are not compatible
with CNNmodels. To be specific, due to the memory limita-
tion, CNNmodels can only be trainedwithmini-batches, and
the optimality of the binary codes produced by such methods
can hardly be guaranteed when the batch size is very small
compared to the whole training set.

On the other hand, if one totally ignores the binary con-
straints, it would result in suboptimal binary codes due to
the discrepancy between the Euclidean space and the Ham-
ming space. A commonly used relaxation scheme is to utilize
sigmoid or tanh function to approximate the thresholding
procedure. Nevertheless, working with such saturated non-
linear functions would inevitably slow down or even restrain
the convergence of the network due to gradient vanishing
problem (Krizhevsky et al. 2012). To overcome such limi-
tation, in this work we propose to impose a regularizer on
the real-valued network outputs to approach the desired dis-
crete values (+ 1/− 1), as shown in Fig. 2. To be specific,
we replace the Hamming distance in Eqs. (1) and (3) by
Euclidean distance, and impose an additional regularizer to
replace the binary constraints, then Eq. (1) is rewritten as:

Lr
con(b1,b2, y) = 1

2
(1 − y)||b1 − b2||22

+1

2
y max(mc − ||b1 − b2||22, 0)

+ α(|| |b1| − 1||1 + || |b2| − 1||1) (5)

where the superscript r denotes the relaxed loss function, 1 is
a vector of all ones, || · ||1 is the L1-norm of vector, | · | is the
element-wise absolute value operation, and α is a weight-
ing parameter that controls the strength of the regularizer.
Similarly, Eq. (3) is rewritten as:

Lr
tri (ba,bp,bn) = LE

tri (ba,bp,bn)

+ α(|| |ba | − 1||1 + || |bp| − 1||1)
+|| |bn| − 1||1) (6)
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where LE
tri (ba,bp,bn) = 1

2max(||ba−bp||22−||ba−bn||22+
mt , 0), and the superscript E denotes squared Euclidean dis-
tance.

Here we use L2-norm to measure the distance between
network outputs because the subgradients produced by
lower-order norms treat the image pairs with different dis-
tances equally and thus cannot make use of the information
involved in different distance magnitudes. While higher-
order norms are also feasible, more computations will be
incurred accordingly at the same time. As for the regular-
izer, L1-norm is chosen rather than higher-order norms for
its much less computational cost, which can favorably accel-
erate the training process.

By substituting Eqs. (5) and (6) into Eqs. (2) and (4)
respectively, we rewrite the relaxed overall loss function as
follows:

Lr
con =

Nc∑

i=1

{
1

2
(1 − yi )||bi,1 − bi,2||22

+ 1

2
yi max(mc − ||bi,1 − bi,2||22, 0)

+ α(|| |bi,1| − 1||1 + || |bi,2| − 1||1)
}

(7)

Lr
tri =

Nt∑

i=1

{
LE
tri (bi,a,bi,p,bi,n)

+ α(|| |bi,a | − 1||1 + || |bi,p| − 1||1
+|| |bi,n| − 1||1)

}
(8)

With these objective functions, the network is trained
using back-propagation algorithm with mini-batch gradient
descent method. To do so, the gradients of Eqs. (7) and (8)
w.r.t. b need to be computed. Since the max operations and
the absolute value operations in the objective functions are
non-differentiable at some certain points, we use subgradi-
ents instead, anddefine the subgradients to be1 at suchpoints.
The subgradients of Eqs. (7) and (8) are respectively written
as:

∂Lr
con

∂bi, j
= (−1) j+1(1 − yi )(bi,1 − bi,2)

+ I{||bi,1 − bi,2||22 < mc}(−1) j yi (bi,1 − bi,2)

+ αδ(bi, j ) (9)

∂Lr
tri

∂bi,a
= I{LE

tri (bi,a,bi,p, bi,n) > 0}(bi,n − bi,p) + αδ(bi,a)

∂Lr
tri

∂bi,p
= I{LE

tri (bi,a,bi,p, bi,n) > 0}(bi,p − bi,a) + αδ(bi,p)

∂Lr
tri

∂bi,n
= I{LE

tri (bi,a,bi,p, bi,n) > 0}(bi,a − bi,n) + αδ(bi,n)

(10)

where

δ(x) =
{
1, − 1 ≤ x ≤ 0 or x ≥ 1

− 1, otherwise
(11)

is applied element-wisely, and I{condition} = 1 when
condition is true, and 0 otherwise. With the computed sub-
gradients over mini-batches, the rest of the back-propagation
can be done in standard manner.

With such a framework, the binary codes of images can be
easily obtained with sign(b). Experiments in Sect. 5.2.2 will
validate the advantage of the regularizer over saturated non-
linearities, which are adopted by most existing CNN-based
hashing methods (Lai et al. 2015; Lin et al. 2015a; Xia et al.
2014; Zhang et al. 2015; Zhao et al. 2015).

4 Network Structure and Training

4.1 Network Structure

For fast training and thorough evaluation of each component,
a relatively shallow CNN structure is designed as illus-
trated in Fig. 1, which consists of three convolution-pooling
layers followed by two fully connected layers. The convo-
lution layers use 32, 32, and 64 5 × 5 filters with stride
1 respectively, and the pooling is performed over 3 × 3
windows with stride 2. The first fully connected layer con-
tains 500 nodes, and the second contains k nodes, where
k is the length of binary code. All the convolution lay-
ers and the first fully connected layer are equipped with
the ReLU activation (Nair and Hinton 2010). Note that for
real-world applications, any deeper network structures are
also compatible with the proposed framework, e.g. AlexNet
(Krizhevsky et al. 2012) and ResNet (Zhang et al. 2016).
We have evaluations of such different network structure in
Sect. 5.2.5, and experiments show that such deeper CNNs
can significantly improve the performance of the proposed
method.

4.2 TrainingMethodology

4.2.1 Online Image Pair/Triplet Generation

An intuitive way to train the network is to use the Siamese-
like structure as proposed in Hadsell et al. (2006) and feed
the network with pre-generated training image pairs/triplets.
However, with such a scheme, processing n images could
only provide n

2 valid image pairs or n
3 image triplets, and stor-

ing the pre-generated image pairs/triplets could be very space
intensive. Tomake better use of computational resources and
storage space,wepropose an alternative algorithm that gener-
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ates image pairs/triplets online. Specifically, instead of using
the Siamese-structure, we adopt the single-trunk CNN struc-
ture as illustrated in Fig. 1. With such a structure, we could
exploit all the samples in each mini-batch to construct C2

n
unique pairs orC3

n triplets. To cover those image pairs/triplets
across batches, in each iteration the training images are ran-
domly selected from the whole training set. By doing so,
our method alleviates the need to store the whole pair-wise
similarity matrix (or triplet indices), thus being scalable to
large-scale datasets. Specifically, for the triplet version of our
method, we follow (Hermans et al. 2017) to use the number
of triplets that have non-negative loss values to normalize
the gradients, which has shown to be beneficial for training
triplet loss. Please refer to Hermans et al. (2017) for more
details.

As for the margin mc in the contrastive loss and mt in
the triplet ranking loss, we propose a heuristic strategy by
settingmc = 2k to encourage the codes of dissimilar images
to differ at no less than k

2 bits, and mt = 8 to constrain the
Hamming distance of dissimilar pairs to be larger than that
of the similar pairs by at least 2 bits following (Lai et al.
2015).

4.2.2 Schemes for Obtaining Long Codes

To learn models corresponding to different code lengths, if
one chose to train each model from scratch, it would be
severelywasteful since the preceding layers should have been
shared by these models. Besides, as the code length grows,
themodel would containmore parameters in the output layer,
and thus cause a more serious problem, which is known as
overfitting. To overcome such limitations, we propose two
alternative schemes to obtain long binary codes: (a) Fine-
tune. Finetuning has beenwidely adopted to avoid overfitting
on small datasets and has shown promising results, e.g. Lin
et al. (2015a, b). In this scheme,we first train a networkwith a
few (e.g. k = 12) nodes in the output layer, and then finetune
it to obtain the target model with the desired code length. To
be specific, during finetuning, only the network parameters in
the last layer are trained with a large learning rate, while the
parameters in the other layers are trainedwith a smaller learn-
ing rate and thus only change slightly. Therefore, this scheme
could relieve overfitting by reducing the number of parame-
ters that need to be learned from scratch. (b) Ensemble. This
scheme is based on network ensembles, which are widely
used in classification tasks (Zhang et al. 2015; Krizhevsky
et al. 2012; Szegedy et al. 2015) but nearly unexplored for
retrieval tasks. Specifically, we train several networks, each
of which has only a few output nodes, and concatenate the
outputs of these models to obtain long codes. Since each
model contains a relatively small number of parameters, it is
less likely to overfit. Moreover, due to random initializations
of the individual models, it is possible that models learned

with such a scheme could capture complementary informa-
tion. We will evaluate the training-from-scratch strategy as
well as the two alternatives in Sect. 5.2.4, and discuss the
advantages and disadvantages of each strategy based on the
experimental results.

5 Experiments

5.1 Experimental Settings

DatasetsWeverify the effectiveness of our proposedmethod
and compare with other state-of-the-art methods (as will be
introduced in Sect. 5.3.1) on three widely used datasets:
(1) CIFAR-10 (Krizhevsky 2009). This dataset consists of
60,000 32×32 color images belonging to 10mutually exclu-
sive categories (6000 images per category). The images are
directly used as input for those competing CNN-based meth-
ods as well as our DSH. For conventional hashing methods,
the images are represented by 512-DGIST descriptors (Oliva
and Torralba 2001) following (Liu et al. 2012; Xia et al.
2014). (2) NUS-WIDE (Chua et al. 2009). This dataset con-
tains 269,648 images collected from Flickr. The associations
between images and 81 concepts are manually annotated.
Following (Liu et al. 2012;Xia et al. 2014),we use the images
associated with the 21most frequent concepts, where each of
these concepts associates with at least 5000 images, resulting
in a total of 195,834 selected images. The images are warped
to 64 × 64 before inputting to the CNN-based methods. For
conventional hashingmethods, images are represented by the
provided 225-D normalized block-wise color moments fea-
tures. (3) SVHN (Netzer et al. 2011). This dataset contains
630,420 32×32 color images of cropped digits (from 0 to 9).
The number of samples from each category is highly imbal-
anced, e.g. there are 13,861 samples of “1” in the training set
and only 4659 samples of “9”. To overcome this problem, we
adopt class-aware sampling (Shen et al. 2016) in the training
stage by randomly selecting 20 images from each category
in each iteration. For this dataset, we directly use the raw
pixels as input for CNN-based methods, and extract 512-D
GIST descriptors (Oliva and Torralba 2001) for conventional
hashing methods as inputs.

Definition of Similarity In our experiments, similarity labels
are defined by semantic-level labels. For CIFAR-10 and
SVHN, images from the same category are considered
semantically similar, and vice versa. As for image triplets,
images that have the same category label as the anchor image
are considered as positive, and negative otherwise. For NUS-
WIDE, if two images share at least one positive label, they
are considered similar, and dissimilar otherwise. On the other
hand, if an image share more positive labels with the anchor
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image than another image, these three images could form a
valid triplet.

Evaluation Protocol On CIFAR-10, the officially provided
train/test split is used for experiments, namely, 50,000 images
for training the models and 10,000 images for evaluation.
On SVHN, all images in the “train” set (73,257 images) are
used for training, and 10,000 images randomly selected from
the “test” set are used for evaluation (here the “extra” set is
ignored for simplicity, and we do not use the whole test set
for memory issues). On NUS-WIDE, we randomly sample
10,000 images to form the test query set, and use the rest as
training set. Following previous works (Lai et al. 2015; Liu
et al. 2012; Xia et al. 2014), the evaluation metrics used are:
themeanAveragePrecision (mAP) for different code lengths,
precision-recall curves of 48-bit codes, and mean precision
within Hamming radius 2 for different code lengths.

Implementation Details Our DSH method is implemented
with the open source platform Caffe1 (Jia et al. 2014). The
weight layers in our models are initialized with “Xavier”
initialization (Glorot and Bengio 2010). For training the
example network structure illustrated in Fig. 1, the batch size
is set to 200, momentum to 0.9, and weight decay to 0.004.
Compared to our preliminary publication (Liu et al. 2016),
we have changed the learning rate policy on CIFAR-10 and
SVHN such that the model is trained with fewer iterations,
namely, the initial learning rate is set to 10−3 and decreases
to 10−4 after 60,000 iterations, and to 10−5 after 65,000 iter-
ations (70,000 iterations in total). As for NUS-WIDE, since
this dataset is larger and more difficult than the other two
datasets, the models for this dataset are trained with more
iterations (150,000 iterations in total, and the learning rate
decreases by 40% after every 20,000 iterations).

5.2 Ablation Study

5.2.1 Training Time

In this part we compare the training time of our DSHmethod
with contrastive and triplet loss on the three datasets. The
results are obtained on a server with Titan X GPU and Intel
Xeon E5-2620 v3 CPU.

The results (seconds) are shown inTable 1.On all datasets,
the models with triplet loss take more training time, since
we use all image pairs/triplets in each mini-batch, and the
number of triplets is much larger than the number of image
pairs. Compared to CIFAR-10, models on NUS-WIDE and
SVHN take more training time. For NUS-WIDE, this can
be explained by the larger image resolution (64 × 64 of

1 The source code of our DSH with running samples are available
at http://vipl.ict.ac.cn/resources/codes or https://github.com/lhmRyan/
deep-supervised-hashing-DSH.

Table 1 Training time (seconds) of our method with the two different
loss functions

Loss CIFAR-10 NUS-WIDE SVHN

Contrastive 1376.51 8381.62 9003.90

Triplet 5667.60 16,965.47 17,580.54

NUS-WIDE compared to 32 × 32 of CIFAR-10) and more
training iterations (150,000 compared to 70,000). As for
SVHN, the image resolution and the training iteration are the
same as CIFAR-10, and the difference can be attributed to
the batch generation scheme (i.e. the class-aware sampling).
Since SVHN have much more training images than CIFAR-
10, the random sample selection in each iteration takes more
time, resulting in longer training time.While not investigated
in our current study, by optimizing the implementation, the
sampling time could be significantly reduced and the training
could be accelerated.

5.2.2 Evaluation of the Regularizer

In this part, we validate the effectiveness of the proposed reg-
ularizer, and compare it with the standard relaxation scheme
used in existing CNN-based hashing methods (Erin Liong
et al. 2015; Lai et al. 2015; Xia et al. 2014). Without loss
of generality, we only test the case when k = 12, and set
mc = mt = 24 in our DSH method according to Sect. 4.
We also compare the sigmoid relaxed models with con-
trastive loss, which are trained almost the same as ours
except for using sigmoid function as the activation of the
output layer and setting α = 0. We test these models with
mc = {1, 2, 3, 6} (note that the maximal distance between
network outputs of these models is k).

The retrieval mAP of different models with contrastive
loss are listed in Table 2. Figure 4 shows the corresponding
distribution of network outputs on the test set of CIFAR-10
under different settings (the distributions on other datasets
are similar). We make three observations from the com-
parison results: First, without regularization and sigmoid
relaxation (α = 0), the network outputs concentrate on
the quantization threshold 0 (Fig.4a), thus it is likely that
neighboring points in the output space are quantized to very
different binary codes; Second, imposing the regularizer
(α = {0.001, 0.01, 0.1}, Fig.4b,c,d) can reduce the discrep-
ancy between the real-valued output space and the Hamming
space, and the retrieval performances can be improved signif-
icantly when setting α under a reasonable range (e.g. [0.001,
0.01]); Third, with proper settings of the margin parameter
mc, the sigmoid relaxed model can learn binary-like outputs
(Fig.4e,f,g). Nonetheless, the retrieval performances of such
codes are much inferior to our best-performing ones and are
sensitive to mc. Increasing the number of training iterations
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Table 2 Retrieval performance (mAP) of models with different loss
functions, α, relaxation, and margin

Models CIFAR-10 NUS-WIDE SVHN

Regularizer-α-0 0.5607 0.5076 0.8464

Regularizer-α-0.001 0.6571 0.5341 0.8671

Regularizer-α-0.01 0.6778 0.5604 0.8846

Regularizer-α-0.1 0.3674 0.4493 0.8094

Sigmoid-m-6 0.1706 0.4876 0.1200

Sigmoid-m-3 0.3267 0.5067 0.5750

Sigmoid-m-2 0.3327 0.4838 0.5748

Sigmoid-m-1 0.2395 0.4638 0.4548

Regularizer-tri-α-0 0.5626 0.4976 0.7327

Regularizer-tri-α-0.001 0.6360 0.5629 0.7867

Regularizer-tri-α-0.01 0.6067 0.5395 0.8297

The top panel corresponds to the models with contrastive loss and dif-
ferent α. The middle panel shows the models with sigmoid relaxation
and different margin. The bottom panel demonstrates the models with
triplet loss and different α. The results are obtained with 12-bit binary
codes

and carefully tuning mc might improve the performance of
the sigmoid relaxed models, however, it would take much
more time to obtain a satisfactory model. Based on the above
observations, we empirically set α = 0.01 in the following
experiments.

On the other hand, our proposed regularizer can also
be combined with triplet ranking loss, and the results are
shown in Table 2. We can see that ignoring the binary

characteristic of the desired output space in the training stage
(setting α = 0) severely deteriorates the retrieval perfor-
mance of the learnedmodels (compared to themodels trained
with α > 0), indicating that the proposed regularizer is com-
patible with multiple kinds of loss functions (contrastive loss
and triplet loss in our method). Carefully tuning the hyperpa-
rameters (α andmt ) might further improve the performances,
however, that is beyond the scope of this paper.

By comparing models with the two loss functions, we can
observe that models with contrastive loss outperform those
with triplet loss on the single-label datasets (CIFAR-10 and
SVHN), and the two groups ofmodels produce similar results
on multi-label dataset (NUS-WIDE). A possible explanation
for this phenomenon is that contrastive loss has stricter con-
straints on similar pairs than triplet loss, i.e. the distances
between similar pairs should be as small as possible in con-
trastive loss, whereas the distances between similar pairs are
only required to be smaller than the distances between dis-
similar pairs in triplet loss. As a result, samples from the
same category aremore compactwhen using contrastive loss,
resulting in better performance on CIFAR-10 and SVHN. On
the other hand, since NUS-WIDE is a multi-label dataset and
the similarity relationships are more complex (note that it is
possible in NUS-WIDE that both images A and C are similar
to image B, but A is dissimilar to C), the contrastive loss
might face with some contradictory constraints in optimiza-
tion (e.g. D(A, B) = 0, D(B,C) = 0, and D(A,C) > mc

as in the above example), which could possibly increase the
difficulty of optimization and thus degrade the quality of the
learned model.
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Fig. 4 Distribution of network outputs (with contrastive loss) on the test set of CIFAR-10. a-d the models using our proposed regularizer under
different settings of α, e–h the sigmoid relaxed models under different settings of mc
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Fig. 5 Comparison of training loss between our online image pair generation scheme and the Siamese alternative. The results on CIFAR-10,
NUS-WIDE, and SVHN are shown in (a–c) respectively

Based on the above results of training time and retrieval
performance, in the following experiments, we only give the
results of our DSH method with contrastive loss (with α =
0.01 and mc = 2k) unless otherwise specified.

5.2.3 Online Versus Offline Image Pair Generation

This part compares the convergence behavior of our online
image pair generation scheme against the alternative Siamese
scheme, as described in Sect. 4.2.1. Both schemes employ
the same network structure and hyperparameters as detailed
in previous sections (i.e. k = 12 and mc = 24). Due to
limited storage space, 10 million image pairs were generated
offline for the Siamese scheme, and the learning rate policy is
tuned accordingly. For fair comparison, we sample the same
number of images for both schemes in each iteration so that
the computation costs of the two schemes are approximately
the same (since the computations mainly take place in the
convolution-pooling layers). To be specific, for contrastive
loss with a batch size of 200, about 20,000 image pairs are
adopted in each iteration in our online scheme, and the total
number of image pairs is about 1.4 billion (with duplicates)
for CIFAR-10 and SVHN and 3 billion (with duplicates) for
NUS-WIDE. In contrast, 200 images only contribute 100
image pairs for the alternative Siamese scheme in each iter-
ation, and the total number of image pairs is only 10 million
in the offline scheme.

Figure 5 shows the training loss against the number of
iterations on the three datasets. As can be seen, our online
training scheme converges faster than the Siamese alter-
native, since our online scheme has the capacity to utilize
much more image pairs in each iteration, which offers more
information about the semantic relations between different
images. Besides, by sampling from the whole training set in
each iteration, our scheme can make use of more image pairs
than the offline generated 10 million pairs for Siamese, and
thus satisfactorily converges to a lower loss.

5.2.4 Different Schemes for Generating Long Binary Codes

As mentioned in Sect. 4.2.2, if the last fully connected layer
contains a large number of nodes (i.e. more learnable param-
eters), training the model from scratch may lead to severe
overfitting. Based on this assumption, in this part we compare
three schemes for obtaining long binary codes, including the
training-from-scratch scheme and the two alternatives intro-
duced in Sect. 4.2.2.

Specifically, we first train four models with randomly
initialized weights that produce {12, 24, 36, 48}-bit binary
codes respectively (the first four rows in Table 3, denoted
by “Trained From Scratch”). Then we replace the last fully
connected layer of the above 12-bit model with a randomly
initialized larger one, and finetune it to get another group
of {24, 36, 48}-bit models (the middle three rows in Table 3,
denoted by “Finetune”). For finetuning, the learning rate is set
to 10−3 for the last fully connected layer and 10−4 for the pre-
ceding layers, anddecrease by a factor of 0.6 after every 4,000
iterations. The model is finetuned for 30,000 iterations in
total. In addition, threemore 12-bitmodels are trained, result-
ing in four 12-bit models altogether. Then we concatenate
the outputs of these 12-bit models to obtain {24, 36, 48}-
bit codes, and report the best performances among their
combinations (the last three rows in Table 3, denoted by
“Ensemble”).

The retrieval mAPs on three datasets are listed in Table 3.
It can be found that as the code length grows, the retrieval per-
formances of finetuned models consistently improve, while
the performance of models trained from scratch falls, espe-
cially on the NUS-WIDE dataset with a large drop. To take
a closer look at the situation, we analyze the training/test
loss on two sets of models, namely, the 48-bit models trained
from scratch, and the finetuned 48-bitmodels. Figure 6 shows
the loss against the number of iterations for the two sets of
models. It is clear that the second set of models (finetuned)
always converge to lower losses than the first set of mod-
els (trained from scratch). Especially on the smallest dataset
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Table 3 Comparison of
retrieval performance (mAP) of
the models trained from scratch,
the finetuned models, and the
ensemble of multiple models

Code length CIFAR-10 NUS-WIDE SVHN

Trained from scratch 12 0.6778 0.5604 0.8846

24 0.7046 0.5543 0.8763

36 0.7024 0.5229 0.8903

48 0.6906 0.4896 0.8867

Finetune 24 0.7129 0.5780 0.8992

36 0.7245 0.5812 0.9028

48 0.7319 0.5875 0.9062

Ensemble 24 0.7282 0.5794 0.9037

36 0.7458 0.5870 0.9116

48 0.7536 0.5882 0.9146
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Fig. 6 Comparison of models trained from scratch (a–c) and finetuned models (d–f) in terms of training/test loss, on all three datasets

CIFAR-10, on the first model (Fig. 6a) the training loss keeps
decreasing, while the test loss decreases as expected at the
beginning but starts to increase after about 20,000 iterations,
indicating overfitting on the training set. In contrast, on the
second model (Fig. 6d), the test loss decreases at first and
then favorably stabilizes after only a few thousand iterations.
Such observations suggest that the different models with var-
ious code lengths can share those preceding layers to reduce
training cost as well as to alleviate overfitting.

On the other hand, the model ensemble scheme consis-
tently performs the best for all compared code lengths. Under

the same code length, the ensemble codes further improve the
retrieval performance of the finetuned codes by about 0.02 in
terms of mAP, verifying the effectiveness of network ensem-
bles in retrieval task. In fact in our experiments, not only the
best-performing ensemble but also nearly all ensembles we
have experimented with can improve the performance. One
possible explanation is that themultiple networks can capture
complementary image characteristics due to random initial-
ization. Besides, since each individual model in the ensemble
only contains a small number of learnable parameters, it is
less likely to overfit on the training set. Nevertheless, since
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nal network structure in Liu et al. (2016) and ResNet (Zhang et al. 2016)

exploiting network ensembles will lead to multiple times of
training and encoding cost, we adopt the finetuned models in
the following experiments for efficiency consideration.

5.2.5 Deeper Network Structure

As mentioned in Sect. 4.1, our framework is relatively gen-
eral, and can thus exploitmore complex network structures to
further boost the performance. In this subsection, we replace
the shallownetwork in the previous sectionswith the 32-layer
ResNet described in Zhang et al. (2016). We adopt the learn-
ing rate policy in the original publication, and experiment on
the 12-bit binary codes. The results are shown in Fig. 7. It is
obvious that incorporating the ResNet structure improves the
performance of our DSH method on all datasets, especially
on CIFAR-10, confirming that our method can benefit from
more advanced model designs. As for the other datasets, the
improvements are not as significant. A possible explanation
is that the contrastive loss is not well suited for themore com-
plex semantic similarities on NUS-WIDE, and the network
structure of the 32-layer ResNet is designed for the 32 × 32
inputs of CIFAR-10 rather than the 64 × 64 inputs of NUS-
WIDE. On the other hand, the performance improvement of
ResNet is only marginal on SVHN, which can be largely
attributed to the fact that the performance on this dataset is
already nearly saturated with the original shallow network,
thus can hardly be further improved.

5.3 Comparison with State of the Arts

5.3.1 Quantitative Analysis

Comparative Methods We compare our method with LSH
(Gionis et al. 1999), SH (Weiss et al. 2008), ITQ (Gong and
Lazebnik 2011),CCA-ITQ (Gong andLazebnik 2011),MLH
(Norouzi and Fleet 2011), BRE (Kulis and Darrell 2009),
KSH (Liu et al. 2012), CNNH (Xia et al. 2014), DLBHC

(Lin et al. 2015a), DNNH (Lai et al. 2015), and DPSH (Li
et al. 2016). Thesemethods are all implemented using source
codes provided by the authors. For fair comparison, all the
CNN-based methods, including CNNH, DLBHC, DNNH,
DPSH, and DSH, use the same network structure (i.e. the
same convolution-pooling layers and the first fully connected
layer), as described in Sect. 4.1. Note that while more com-
plicated network structures can be also feasible, we choose
to work with a relatively simple one for easier evaluation.
For all conventional hash learning methods, they use the
hand-crafted features commonly exploited on each dataset,
as described in Sect. 5.1.

Training Set We use the whole training set to train models
for all methods if possible. However, due to the huge amount
of memory demanded by MLH, KSH and CNNH (O(N 2),
where N is the number of training images), in our experi-
ments, we randomly select a 20,000 subset from each dataset
to train models for these three methods, which already costs
more than 10GB of memory.

Parameter Settings The parameters of those comparative
methods are set based on the authors’ suggestions in the
original publications. In particular, we find the divide-and-
encode structure devised in DNNH (Lai et al. 2015) largely
degrade the retrieval mAP on CIFAR-10 (about 0.07) and
bring marginal improvement on NUS-WIDE (0.01–0.03) in
our experiments, thus we report the performances of the fully
connected version for simplicity.

Results The comparisons of our method against the others
are shown in Table 4 and Fig. 8. In general, those CNN-based
methods not surprisingly outperform the conventional hash
learningmethods on all datasets by a largemargin, validating
the advantage of learning image representations over using
hand-crafted features. Among the CNN-based methods, it
is observed that our DSH achieves state-of-the-art retrieval
accuracyonall datasets. Theperformancegaps between these
methods mainly come from the differences in their training
objectives: CNNH trains the model to fit the pre-computed
discriminative binary codes. However, as the binary code
generation and the network learning are isolated, a mismatch
exists between the two stages; DLBHC trains the model
with a binary-like hidden layer as features for classifica-
tion tasks, thus encoding dissimilar images to similar binary
codes would not be punished as long as the classification
accuracy is unaffected; while DNNH uses triplet-based con-
straints (rather than the pairwise constraints adopted by our
method) to model more complex semantic relations, training
its network becomes more difficult, due to the sigmoid non-
linearity and the triplet ranking loss itself. As a result, DNNH
performs inferior to our DSH method, especially on CIFAR-
10 and SVHN, where the triplet-based constraints cannot
provide more information than the pairwise ones since the
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to ours, DPSH performs inferior to our method on CIFAR-10
and SVHN, yet marginally better than ours on NUS-WIDE.
The differences mainly come from the finetuning scheme
(Sect. 5.2.4), the class-aware sampling strategy, and different
ratios between the numbers of similar and dissimilar image
pairs on the three datasets. Among the above three factors,
the first two can explain why DSH performs much better on
CIFAR-10 (especially with long codes) and the imbalanced
SVHN dataset. On the other hand, since NUS-WIDE dataset
hasmore similar image pairs than the other two datasets (Cao
et al. 2017), andDPSHadopts column sampling strategy over
the whole training set in the training stage while our method
only computes the loss within a single mini-batch, the dif-
ference in ratios has larger impact on our method.

To further investigate the performance of conventional
hashing methods with CNN features, we test the perfor-
mance of 48-bit codes generated by LSH, CCA-ITQ, and
KSH on CIFAR-10 using two kinds of CNN features, i.e. the
L2-normalized 500-D network activations of the first fully-
connected layer extracted from (a) CNN-ours: our 12-bit
model, and (b) CNN-cls: a model with the same preced-
ing layers as our model but trained for classification task
(obtained by replacing the output layer of our model with a
10-way softmax loss layer), which achieves 80.15% accu-
racy on the CIFAR-10 test set. Results are shown in Table 5.
The performances of conventional methods improve signifi-
cantly with CNN features (even comparable to our method),
and the features from our model are superior to the ones from
the classification model, validating again our motivation of
learning binary codes in an end-to-end manner. Besides, the
non-linear hashing method KSH performs much better than
the linear method CCA-ITQ when using GIST features, and
as the features become more suitable for retrieval task (from
GIST to CNN-cls and to CNN-ours), the performances of
both methods are improved and the gap is narrowed down,
suggesting that linear hashing methods could be as good as
non-linear methods when equipped with suitable image fea-
tures.

5.3.2 Qualitative Analysis

In this part, we show some failed retrieval cases on CIFAR-
10 and NUS-WIDE. We compare the result of the proposed
DSH method against LSH (Gionis et al. 1999), ITQ (Gong
and Lazebnik 2011), CCA-ITQ (Gong and Lazebnik 2011),
MLH (Norouzi and Fleet 2011), KSH (Liu et al. 2012),
DLBHC (Lin et al. 2015a), and DNNH (Lai et al. 2015).
The results on the two datasets (CIFAR-10 and NUS-WIDE)
are shown in Figs. 9 and 10 respectively. For space limita-
tion, only the top-10 feedbacks corresponding to each query
image are shown here, with the true matches bounded by
red boxes. The number of true matches of each method is
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Fig. 8 Comparison of retrieval performance of our DSH method and the other hashing methods on CIFAR-10, NUS-WIDE, and SVHN. a–c PR
curves (with 48-bit codes). d–f Mean precision within Hamming radius 2

Table 5 Retrieval mAP on CIFAR-10 with 48-bit binary codes

LSH CCA-ITQ KSH DSH

Hand 0.1492 0.2176 0.4167 –

CNN-cls 0.3686 0.6384 0.6978 –

CNN-ours 0.3918 0.7118 0.7014 0.7319

The compared conventional hashing methods are trained with differ-
ent features, including Hand: hand-crafted features (i.e. 512-D GIST
features, as reported in Table 4),CNN-cls: CNN features from the clas-
sification model, and CNN-ours: CNN features from our 12-bit model

listed beside the retrieval results, and the label(s) of query
images are also provided. We can observe that in the failed
cases, although the top feedbacks of our method are dissim-
ilar with the query image, the top feedbacks themselves are
similar to each other. Specifically, when compared to the
conventional hashing methods, the top feedbacks of CNN-
based methods are less diverse, e.g. the top-10 feedbacks of
MLH in Fig. 9 contain images of five categories (truck, boat,
bird, car, airplane, and horse), while the top-10 feedbacks of
our DSH method contains only two categories (airplane and
boat). This observation suggests that our method is able to
preserve the similarity of images, yet sometimes incorrectly
recognizes the semantic meanings of query images, which
could be improved by exploiting deeper and more complex
network structures.

5.3.3 Comparison of Encoding Time

In real-world applications, generating binary codes for new-
coming images should be fast. In this part, we compare the
encoding time of our DSH method and 8 other supervised
hashing methods: CCA-ITQ (Gong and Lazebnik 2011),
MLH (Norouzi and Fleet 2011), BRE (Kulis and Darrell
2009), KSH (Liu et al. 2012), CNNH (Xia et al. 2014),
DLBHC (Lin et al. 2015a), DNNH (Lai et al. 2015), and
DPSH (Li et al. 2016), including the linear and non-linear
conventional hashing methods along with the state-of-the-art
CNN-based methods. For thorough comparison, we report
the encoding time of CNN-based methods both on CPU
and GPU, and the feature extraction time for conventional
hashing methods (using the publicly available code of GIST
feature extraction,Oliva andTorralba 2001). Sincewe use the
authors’ provided features for NUS-WIDE and only extract
exactly the same features for CIFAR-10 and SVHN, all
comparisons are conducted on CIFAR-10. Without loss of
generality, we only report the timings of 24-bit and 48-bit
codes. The binary codes of all CNN-based methods are gen-
erated with the same version of Caffe. The experiments are
carried out on a PC with Intel i7-4770, 32GB RAM, and
NVIDIA Titan Black with CUDA-7.5 and cuDnn v4.0.

The logarithmic encoding time (inmicroseconds, base 10)
of such hashing methods is shown in Fig. 11, where results
are obtained by averaging over thewhole test set. CNN-based
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Fig. 9 A failed retrieval case on CIFAR-10, only the top-10 feedbacks are shown due to space limitation. Results are obtained with 48-bit binary
codes. Images with red boxes are true matches (Color figure online)

methods take almost the same time to encode a single image
with varying code lengths, since the computations mainly
take place in the common preceding layers. In general, when
only considering generating binary codes frommodel inputs,
even the GPU accelerated version of CNN-based methods
are slower than the conventional methods by at least an order
of magnitude. However, taking the feature extraction time
into consideration, the CNN-based methods are more than
10 times faster than the comparative conventional hashing
methods. Moreover, the conventional hashing methods usu-
ally require several types of features to achieve comparable
retrieval performances to CNN-based methods, which fur-
ther slows down the whole encoding procedure.

5.3.4 Cross-Dataset Retrieval

It is desirable that models trained on one dataset can be used
for accurate image retrieval on another dataset. For this pur-
pose, we conduct experiments in this part to see how the
comparative methods and our method perform in such cross-
dataset retrieval setting. To this end, we train 12-bit models

on the large-scale ImageNet dataset and test the retrieval
accuracies on the two object-centric datasets CIFAR-10 and
NUS-WIDE. Specifically, we adopt the AlexNet structure,
and replace the “fc8” layer with a fully connected layer
with 12 nodes. The network is initialized with the model
weights pre-trained on ImageNet classification task. To train
the model, we set the learning rate to 0.001 for the newly
added layer and 0.0001 for the preceding layers. The model
is trained using SGD with momentum 0.9 for 60,000 iter-
ations. Triplet loss with mt = 8 and α = 0.01 is adopted
as supervision signals for a direct comparison with DNNH.
After the training finishes, we test the model with exactly
the same protocol as the above sections. For comparison, we
compare the performance with four representative hashing
methods, i.e. LSH, ITQ, CCA-ITQ and DNNH, to com-
pare the relative performance of our method. For non-deep
methods (LSH, ITQ, and CCA-ITQ), we extract “fc7” fea-
tures of the training and test set of the two datasets using
the pre-trained AlexNet. For DNNH, we fine-tune the model
similarly as ours. All comparative methods are implemented
with the source codes released by the original authors.
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Fig. 11 Time cost to encode one new-coming image (microseconds)
on CIFAR-10

The mAP results of the compared methods are listed
in Table 6. We make four observations from these results.
First, all compared data-dependent methods (ITQ, CCA-

ITQ, DNNH, andDSH) perform better than LSH, suggesting
that even the hash functions learned on an independent
dataset are better than random projections. Second, all data-
dependent methods performs similarly except for DNNH. A
possible explanation is that DNNH does not use the tricks in
Hermans et al. (2017) for training triplet loss, and such results
again suggest that triplet loss is difficult to train on such large-
scale datasets. Third, compared to Table 4, even though the
CNN features are not specifically designed for the evaluated
datasets, using such features can improve the performance
of all non-deep methods (LSH, ITQ, and CCA-ITQ), again
validating the advantage of deep features. Fourth, the per-
formance drops significantly on CIFAR-10 (compared to
DNNH&DSH in Table 4 and LSH& CCA-ITQ in Table 5),
while the performance on NUS-WIDE only drops slightly
(compared to DNNH and DSH in Table 4). Such a contrast
could be attributed to the fact that images in NUS-WIDE are
more similar to ImageNet images (both are high-resolution
natural images), while images in CIFAR-10 are very differ-
ent from ImageNet images (images in CIFAR-10 have much
lower resolution compared to ImageNet images, i.e. 32× 32
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Table 6 Cross-dataset retrieval performance (mAP) of 4 existingmeth-
ods and our proposed DSH method on CIFAR-10 and NUS-WIDE

Method CIFAR-10 NUS-WIDE

LSH 0.142 0.379

ITQ 0.214 0.552

CCA-ITQ 0.205 0.559

DNNH 0.153 0.513

DSH 0.211 0.551

compared to 256×256). As a result, features learned on Ima-
geNet canmore easily transfer to NUS-WIDE and can hardly
extract useful information from images on CIFAR-10.

6 Conclusions

In this paper we address the problem of large-scale content-
based image retrieval. Considering the low time andmemory
costs of binary codes in retrieval tasks, we propose a Deep
Supervised Hashing (DSH) method which jointly learns the
image representation and hash functions in an end-to-end
manner. Experiments on three challenging datasets validate
the superiority of our proposed method. We attribute the
promising retrieval performance of DSH to three aspects:
First, the coupling of non-linear feature learning and hash
coding for extracting task-specific image representations;
Second, the proposed regularizer for reducing the discrep-
ancy between the real-valued network output space and the
desired Hamming space; Third, the online generated dense
pairwise supervision for well describing the desired Ham-
ming space. In terms of efficiency, experiments have shown
that the proposed method encodes new-coming images even
faster than conventional hashing methods. By combining
our framework with more complex network structure, which
could be done easily, the performance of ourmethod is signif-
icantly improved. In addition, exploratory study of “network
ensembles” in this work has proven it a promising way that
is worth our future investigation to further boost retrieval
performance.

Although we propose a regularizer to reduce the dis-
crepancy between the network output space and the desired
Hamming space, some outputs still fall around the threshold
(i.e. 0) as shown in Fig. 4, which is likely to degrade the per-
formance of the learned models. Inspired by recent works
that constrain the weights and activations in the neural net-
work to be binary (Rastegari et al. 2016; Soudry et al. 2014),
we intend to explore directly optimizing the loss function in
Hamming space in our future work.
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